Gradient Driven and Singular Flux Blowup of Smooth Solutions to Hyperbolic Systems of Conservation Laws

نویسنده

  • HELGE KRISTIAN JENSSEN
چکیده

Abstract. We consider two new classes of examples of sup-norm blowup in finite time for strictly hyperbolic systems of conservation laws. The explosive growth in amplitude is caused either by a gradient catastrophe or by a singularity in the flux function. The examples show that solutions of uniformly strictly hyperbolic systems can remain as smooth as the initial data until the time of blowup. Consequently, blowup in amplitude is not necessarily strictly preceded by shock formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradient Driven and Singular Flux Blowup of Smooth Solutions to Hyperbolic Conservation Laws

We consider two new classes of examples of sup-norm blowup in finite time for strictly hyperbolic systems of conservation laws. The explosive growth in amplitude is caused either by a gradient catastrophe or by a singularity in the flux function. The examples show that solutions of (uniformly) strictly hyperbolic systems can remain as smooth as the initial data until the time of blowup. Consequ...

متن کامل

Self-similar solutions‎ ‎of the Riemann problem for two-dimensional systems of conservation‎ ‎laws

In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

Blowup Asymptotics for Scalar Conservation Laws with a Source

We study asymptotic properties of solutions of scalar conservation laws with a positive superlinear source and with blowup at a single point. In a neighbourhood of the blowup point the asymptotic proole turns out to be diierent depending on whether blowup occurs along a shock curve or in a region where the solution is smooth. The proole is explicitly calculated in the cases with a powerlike flu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004